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STATISTICAL IMAGE MODELING

I INTRODUCTION

The w~ay a digital image is processed depsadslargely on how it is

modeled. Genrsiy _image models are useful in image coding,

compression, interpretation, classification, texture characterization as

well as image enchancement and restoration. Both statistical and struc-

tural models of images have been considered as the images contain both

statistical and structural information Purely structural models are

too regular to be interesting!-* In most practical applications especially

in the defense area, the statistical information is most important. With

these applications in min7 ,this report deals with the fundamental theore-

tical topics in statistical image modeling. An extensive list of references

is provided to cover many publications in this important area.

II. TFE CONTEXTURAL ANALYSIS

Consider a digital image with M x N picture elements, i.e., M rows

and N columns. A simple approximation of contextual dependence for the

two-dimensional patterns is called Markov mesh f11, which is considered

as a two-dimensional Markov chain. Assume that the image is partitioned

into m x n subimages. Then this two-dimensional Markov chain is charac-

terized by a transition probability matrix P defined as

p p' P -12 p b- P --- P n

P2,1 P2,2 P2,b-1l 2,b P2,n

P .

mn

(1)
Pa-l,l Pa-l,2 Pa-l,b-I Pa-l,b Pa-l,n

p P --- p p --- p
m,l m,2 m b-j m,b m,n
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where P 3 P(x xi) is the transition probability. Here xi,xJ are the

vector measurements of subimages. It can be shown that for binary ran-

dom patterns,

Pa-l,b-i Pa-l,b Pa-lb+l

P(P aIP ) P p Pa,b-l Pa,b+l (2)a.,b m,n a,b

a+l,b-l a+l,b a+l,b+l2 That the trarsition probability Pa,b depends only on the transition prob-

abilities of the neighboring submiages is a very important result in con-

textual analysis. The above result may be generalized to grayscale pic-

tures. In general, the dependence on the eight neighboring subimages is

most important in contextual analysis.

The use of neighbor dependence approximation for the spatial patterns

imas .first-studied by Chow 12). The tree dependence ho considered [31 can.

also be generalized tospatial patterns; .. n-this case each subimage will

depend on.certain surroundin.s.ubimages in addition to the eight--neighboring

subimages. .-For image:.interpretation or classification •the compund decision

theory provides a theoretical framework for decision makinq using-the con-

tehxual information. However, the practicalimplementation of the compound

decision rule has been limited to Markov dependcnce or neighbor dependence.

Assume that a sub'image depends mnly on its four adjacent subirnages in the

east-wost and north-south directions, then the decision rule is to choose

the class that maximizes the likelihood function [4].

P(O)P(x1'6') 1 P(nile) (3)
i=l

where x and xi correspond to vectut rasurements of the subimaqe under

consideration and its neighboring subimage respectively and 8 - , 2, -- , n

with m being the number of classes. Here
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Pl(xi e) - P(n 8.)P(j e ) (4)

where e. = 1, 2, ... m and P(Oj10) is the transition probability which is
3:

usually determined experimentally. If the four subimages in the four cor-

ners are also considered, then the likelihood function for the eight-

neighbor dependence case is

8
P(e) P(x~e) 11 p(xij) (5)

i=l

where P(x 19) is also given by Eq. (4). The simple result given by Eqs.

(3) and (5) is due to the assumption of conditional independence between

the subimage and the neighboring subimages and the assumption that the

contribution due to the adjacent subilages is independent of that due to

subimages in four corners. Both assumptions are reasonable in theory

though quite restrictive in practice. For example, the occurrence of one

class at one subimage will affect the occurrences of its neighboring

classes. Obviously, the results are not valid for dependence on arbitrary

set of subimages in the neighborhood. Another problem with the compound

decision rule is that the conditional probability densities are usually

not available and the a priori information may not be accurate. Experi-

mental results based on Gaussian assumption of probability densities have

consistently demonstrated the performance improvement with the use of con-

textual information [4], [5]. Empirically it is possible to determine these

densities from the histogram of gray levels of each subimage, which corres-

ponds to an unconditional probability density [6].

As the statistical contextual analysis based on the neighborhood depend-

ence model described above is quite restrictive in practice, further develop-

ment in image modeling is much needed for contextual analysis.
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III. STOCHASTIC RANDOLI FIELD

The Markov random field is the most typical assumption in statistical

models. Wong [7] considered the properties of a two-dimensional random

field having finite first and second moments. He found that there is no

continuous Gaussian random field of two dimensions which is both homogeneous

and Markov of degree 1. A homogeneous random field has a covariance function

that is invariant under translation as well as rotation. Woods [8] considered

a more general definition of Markov mesh than that discussed in the last

section. Hassner and Sklansky [9] also discussed a Markov random field model

for images. They presented an algorithm that generates a texture from an

initial random configuration and a set of independent parameters that specify

a consistent collection of nearest neighbor conditional probabilities which

characterize the Markov random field.

For many practical applications such as in military area, the homogen-

eous random field assumption is not valid because of the object boundaries.

Nahi and Jahanshashi [10] suggested modelling the image as a background sta-

tistical process combined with a set of foreground statistical processes,

each replacing the background in the regions occupied by the objects being

considered. Let

b(m,n) = gray level at the mth row and nth column,

Y(m,n) = a binary function carrying the boundary information,

b = a sample gray level from the background process,
b = a sample level fro the object process, and

b = a sample gray level from the oje process,

v = a sample gray level from the noise process,

then the model can-be written as

(m,n) (m,n) o(m,n) - lb (re,n)

where Y inccrporates the assumption of first order Markov process on the

object boundaries.
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Nuanq wo4ele4 image scan lines as a Markov jump process [il]. This

model led to non-linear noise reduction and image segmentation algorithms

that are superior to linear techniques. The recursive calculation of a

conditional probability involving the boundary component of the scan lines

was the key to the non-linear algorithms. Modestino [121 modeled the image

as a marked point process evolving according to a spatial parameter. In

another approach the image is considered as a spatially variant linear sys-

tem superimposed by tion-linear elements corresponding to object boundaries.

Ingle and Woods (13] considered the use of a bank of Kalman filters corres-

ponding to various correlation directions and demonstrated a considerable

improvement in the visual quality compared with linear constant coefficient

-" j Kalman filtering. Chen [14] has employed an adaptive Kalman filtering that

operates a generalized likelihood ratio test in parallel with the Kalman

filter. An object boundary corresponds to a state jump that is detected

and used to update the Kalman filter' It appears that both textural and

temporal variations can be properly taken into account in the image enhance-

ment.

IV. LOCAL AND GLOBAL MODELS

Local statistical image models emphasize on the use of local statistics

while global models attempt a description of the random field by using the

information from the entire field. In the absence of any knowledge or as

assumption about the global process underlying a given image, one may attempt

to describe the joint probability density of the gray level or other proper-

ties of the picture elements. To do this for the entire image involves

extremely high dimensional space which is unrealistic. It would be easier

to consider a small neighborhood. However, even for a 3 x 3 neighborhood,

a nonparametric representation in a 9 dimensional space along with the asso-
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ciated sample size and storage problems still presents serious difficulty.

Thus even for local models, it would be desirable to "compress" the

local properties to a low dimensional space. Local description of co-

occurrence statistics for textures (e.g. [15]) uses only 2 x 1 neighborhoods.

Different features can then be derived from the co-occurrence matrix for

texture classification.

Most of the local models, however, use conditional probabilities of pic-

ture elements aithin a window, instead of their joint probability distribu-

tions described above. The Markov dependence assumption will make a picture

element depend upon its neighbors. Let r and s be the row number and the

column number associated with a picture element x. A conditional nearest-

neighbor model is

P [X /all other values]
rs

Px7)
S [ Xrs /X rl' s , X r+l,s , xr,s-!' xr,s+1]

and is also known as a Markov field. An efficient procedure to take into

account the local dependence is the statistical theory of nearest-neighbor

systems on a lattice [16. If we consider the four neighbors in the east-west

viest and north-south directions, then we have a non-causal model given by

Tos 1 N(r-l,s +X r+l,s ) +02(xr, s+l) +:xr,s-1 +rsT

where'r - 1, 2, .... H, j - 1, 2, ... , I; 81 and 82 are the coefficients to

be determined; and {Y rsI is an uncorrelated Gaussian noise process with

E[Y 0, va rs - 2, 1, 2,..., m where m is the number of pattern

classes under consideration. The coefficients 8 and 8. may also differ
I 2

among various classes. A special case of Eq. (8) is the causal model given

by

Xrs -
11i "1 { (r-l,s 1 -i

) + (xr,si - ) + Yrs (9)
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Each class w corresponds to a set of parameters (Wi, 81' )" The para-

meter values are given or estimated for each class. Classification con-

sists in deciding which of the given sets of parameter values best des-

cribes, in terms of probabilities, the image to be classified. It is

noted that the model given by Eq. (9) permits discrimination between

classes w. and w. even whe.. (i, i.) = (., a.) so long as i That

is the model performs classification by using the information about the

inter-pixel correlation Ps well as the mean and standard deviation of

gray levels. Both Eqs. (8) and (9) reoresent first order autoregressive

model where the autoregression parameters ai describe the snatial correla-

tion. An alternate expression for the model described by Eq. (9) is

x = L. + S[Xr-l, s + Xr, s- I ] + Yrs 1 1i -~ ~- rs

= a. + Z + Y
1 1 r.s rs

where aI = (1-20)P. and Z r,s Xr--l,s + Xr,sl: Here a. and 3. can be

estimated from ordinary simple linear regression by the method of least

squares. The maximum likelihood coci:ion rule can be used to classify

x which follows the Gaussian probability with all parameters representedrs

by their least squares estimates.

It is noted that one difficulty with the model given by Eq. (8) is

that, even if the Y and hence the x are Gaussian, the estimation ofrs rs

81 and 82 from data is not a simple least-squares problem, because the
Jacobian of the transformation from the noise variable Y to the obser-

vation x is difficult to evaluate. If the density function of thers

finite Fourier transform of x is considered, then the Jacobian of
rs

transformation will be unity [17]. Eqs. (8) and (9) can be generalized

to higher order models. For the second order model, the nicture elements

identified as l's and 2's in the folloting figure should be included in the

linear model.
-7-
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For the nth order model, the picture elements up to a distance of n should

be included in the model. The expression is given by

n n

x X . (X +x )+ a- (X + x )+Y (11)
rs i r-l,s r+l,s i r,s-i r,s+l rs

where the parameters O., 8 can be estimated by using the maximum likelihood

principle [18] if only casual terms are used in Eq. (11).

For the global models considered, the Gaussian model is an oversim-

plification (19] even though it is mathematically tractable. The stationary

Gaussian assumption requires that the mean vector-

of gray levels be a vector of identical components. Hunt [20] suggested to

use a nonstationary Gaussian model which allows the mean vector to have

unequal components.

It would be desirable to include some structural property in the

in the global model. Matheron [211 used the term "regionalized variables"

to emphasize the particular features of the picture elements whose cciplcx

mutual correlation reflects the structure of the underlying phenomenon.

He assumed weak stationarity of the increments in the gray levels between

picture elements. The second moment of the increments in the gray levels

between picture elements at an arbitrary distance, called the variogram,

is used to reflect the structure of the field. Knowledge of the variogram
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is useful for the estimates of many global and local properties of the

field. A characterization similar to the variogram is given by the auto-

correlation function. However for real imagery good functional forms of

variogram and autocorrelation are seldom available. A reasonable approxi-

mation must be sought between the functional form cf the image model and

the real data considered.

V. THE ABMA SYSTFMS

Eq. (11) is the autoregressive model in its general form. A more

general parametric model is called the autoregressive moving average (AR4A)

system which replaces Y in Eq. (11) by a finite number of previous Yrs rs

values. Of course only the causal terms are taken in Eq. (11). The

resulting APMA or mixed model can provide a good representation of the

image with properly chosen coefficients. However an autoregressive model

of sufficient order should be adequate.

To determine the order of the no6,,l, a maximum likelihood decision

rule can be used for choices of neighbors [17]. A simpler procedure is

to use the Akaike Information Criterion (AIC) in each of the two dimensions

and thus the window size can be determined [22] by the final prediction error.

W3e consider two lines parallel to the horizontal and vertical axes passinq

a point (i,j), and emplov one-dimensional estimators.

x. = - (r3U) x*
i_p=l

N
X = x(  

(12)
q=l

where 1! and N are the window sizes in the horizontal and vertical directions

respectively. Let S (M) and S (N) be the minimum estimation errors. We deter-
min min



mine the optimum values of M and N so that the two criterion functions

FPE (M) = I+M+1 S i

FPE N) =J + M + 1 s (N) (3
FPE N) J M l(N) (13)

J - 14 - I min

are minimized. Here the original image size is assumed as I x J. A

more accurate procedure would consider the two dimensions jointly and

may lead to a smaller window size because of the correlation among the

adjacent picture elements. Although, the AIC may lead to inconsistent

result, it is by far the simplest criterion for determining the window

size.

The coefficients in the autorearessive model should be determined

from the autocorrelation function. However it would be desirable to

develop an efficient two-dimensional Levinson recursion to compute the

coefficients. The frequency domain analysis and the maximum entropy

method are alternative procedures for estimation of coefficients.

The study of ARMA systems for image analysis is still at its infancy.

Further development of ARIA systems is much needed for texture characteri-

zation and object boundary extraction.

VI. APPLICATIONS OF STATISTICAL IIIAGE HODELS

In the ARIA systems, images are rescribed by a few coefficients or

parameters which may be coded for image transmission instead of transmitting

the 1whole picture. This represents an important approach to image compres-

sion. Although a limited amount of effort has been made so far in this

direction [23] , development in to--dimensional ARIA models will find great

applicability in image transmission.



II

For the inage interpretation and classification, image models must

emphasize on discrimination information such as the local statistics as

the object and background must be statistically different. Different

objects must have different model parameters. Although most image models

are designed to represent or characterize an image rather than to discri-

minate among different objects or classes, useful discrimination informa-

tion is contained in the Lmage models.

Because of a large variety of images, many different image models

are available. Statistical models are most effective for images which

are rich in texture. The image processing techniques employed are often

determined by image modeling. 2or exaiple, Kalman filtering is parti-

cularly suitable for images modeled as a spatially variant linear system

with additive noise. For images modeled with a multiplicative disturbance,

a different image processing technique is required. On the other hand,

preprocessed images usually make image modeling easier. Image models also

provide useful knowledge about the ise for image segmentation and resto-

ration.

In summary image modeling in general and statistical image modeling

in particular provides an abstraction of rich information of various nature

in the images and should be considered as an integral part of image analysis

and synthesis.
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